Zirconia (ZrO2) is a noteworthy metal oxide because of its characteristics. It can be implemented in different applications; adsorption of pollutant, and photocatalytic oxidation. The main focus of this research was to synthesize ZrO2 from low cost and locally available materials; zircon. As well the preparation of ZrO2 was conducted at different temperature procedures. Characterization of prepared materials was performed using X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR) and scanning electron microscope (SEM) which confirmed the production of homogeneous spherical crystalline ZrO2 compared with commercial ZrO2. Moreover, ZrO2-500 was examined for removal of dye using adsorption and photocatalytic activities. The removal adsorptive capacity of ZrO2-500 for red dye 195 was decreased from 37.1 to 2.2 mg/g with increasing dose up to 3 g/L. Meanwhile, red dye was removed with rate constant of 0.132 - 0.324 h-1 under solar simulator. Finally, zirconia was successively prepared from low cost materials with lower energy and materials consumption.

Keywords: Pollutants, zirconia, dye, adsorption, photocatalysis, degradation

1. Introduction

The fabrics coloring procedures usually are associated with the loosing fraction of used dyes that discharged into wastewater effluent. The wasting of dyes is contingent on the characteristic of used dyes in the processing and dyed fabrics. Regarding to azodyes, it is anticipated that through dyeing processes, about fifteen percent of dyes is vanished [1-3]. Annually, about forty percent of used dyes could be discharged to wastewater stream. The protection of water resources from dying effluents has become a serious need [4]. Advanced oxidation technologies (AOTs) have recently been employed to be effective for mineralization of toxic pollutants in wastewater. Among, AOTs, heterogeneous photocatalysis over semiconductor surface is an attractive remediation method which is considered as sludge free wastewater treatment technique (Badawy et al., 2008; 2015) [5, 6]. Zirconia-based materials are immensely attractive because of their outstanding thermal stability, chemical resistance, mechanical characteristics, and ionic conductivity [7]. Owing to their excellent characteristic such as high strength, toughness, hardness, wear resistance, and thermal shock resistance, zirconia-based materials are used in many engineering applications including automobile engine parts, wire-drawing dies, and cutting tools. ZrO2 is an attractive oxide ceramic for thermal barrier coatings on metals and metallic alloys due to its low thermal conductivity and relatively high coefficient of thermal expansion. Additionally, ZrO2 is an n-type semiconductor with a wide band gap (~5.8 eV), which prohibits its use as an efficient solar photocatalyst. It is well-known that the defect structure has a crucial effect on the physicochemical properties of the metal oxide. The main methods of ZrO2 doping including metal doping, nonmetal doping, and
co-doping can introduce structural defects into the ZrO$_2$ structure leading to the adjustment of band gap energy and enhanced visible-light photocatalytic activity [8-10]. Besides the doping impact, the photocatalytic activity significantly depends on the nanostructural morphology of ZrO$_2$. Zirconium is the most widely distributed and abundant mineral of zirconium. Chemically, zircon is a zirconium orthosilicate (ZrSiO$_4$). Herein, the current targets production of zirconium-based materials from zircon for valorizing the added-value of raw material. As well, feasible and lower cost methodology was applied for production zirconia-based materials and the well known methodology was upgraded for cost saving; chemical or energy. Therefore, the current work aimed to synthesize and characterize the prepared zirconium-based materials and employed as cost effective substance for decontamination of dyes from waters.

2. Materials and Methods

2.1. Preparation of ZrO(OH)$_2$ from zircon

Predetermined amount of zircon sand obtained and roasted at 150 °C for 1 h to remove the moisture content. Stepwise formation of slurry ZrO(OH)$_2$ precipitate, sodium hydroxide (98%, Fisher Scientific, UK) mixed with zircon using different ratios (zircon : alkali, 1:4) and (zircon : alkali, 1:2) and suspended in 200 mL water. Then, it is followed by heating the mixture at 500 °C with rate 10°C/min in muffle furnace (Nabertherm P330, Germany), and then held for 4 h. The fused mass was cooled to room temperature and then the hot cake that was formed was leached with water and dilute HCl (0.1 N) (Fisher Scientific, UK) and filtered till pH 7.5. The precipitate represents zirconium hydroxide ZrO(OH)$_2$ and the other impurities is soluble in water. Then, the obtained ZrO(OH)$_2$ is washed several times with deionized water to remove the impurities. Then, it is dried in oven (TITANOX, Italy) at 120 °C. The dried powders are grinded and calcinated at 450, 500, and 600 °C to obtain ZrO$_2$ materials.

2.2. Characterization of prepared materials

X-ray Diffraction (XRD) Analysis

The prepared ZrO$_2$ materials were examined by XRD technique. The crystallized phases were identified by comparing the collected patterns with standard ASTM cards. XRD patterns were collected using Bruker diffractometer (Germany) with graphite monochromatized Cu-K$_\alpha$ radiation ($\lambda = 1.5406$ Å).

Fourier Transform Infrared Spectra Analysis

FTIR spectrophotometer (630-JASCO, Japan) was used to determine the differences in functional groups. Pellets were prepared with 2 mg material and 100 mg KBr. The spectra were recorded in the wave number range of 400 to 4000 cm$^{-1}$.

Scanning Electron Microscope Analysis

The materials were also characterized by the Scanning Electron Microscope using SEM Model Quanta 250 FEG (Field Emission Gun) with accelerating voltage 30 K.V, magnification 14x up to 1000000 and resolution for Gun.

Synthetic wastewater treatment method using prepared materials

Stock solutions for dye (red dye 195) was prepared in deionized (DI) water. It described as the following; to prepare 1000 ppm of dye 1.0 g of dye separately was dissolved in 1 L of DI water.

Adsorption activity of prepared materials

All adsorption trials were conducted on suitable diluted solution of dye under dark conditions. The containers were shaken by shaker (Stuart scientific, UK) at 250 rpm. The solutions of initial and treated samples were filtered through a syringe filter (PTFE, 0.45 µm); also control sample of raw synthetic wastewaters was filtered through the same syringe filter. The residual pollutant in filtrate was analyzed as mentioned below.

The residual dye was measured using spectrophotometric measurements in the ultraviolet and visible regions of the spectrum ranging from 200 to 700 nm were carried out using a JASCO spectrophotometer (Model V730, Japan). All the experiments were conducted in triplicate and the mean of the results were used for further calculations.

The adsorption capacity of ZrO$_2$ for dye by (q) is estimated according to the following equation (1);

$$ q \left(\frac{mg}{g} \right) = \frac{(C_i - C_e) \left(\frac{m_d}{L} \right) x V}{m \left(\frac{d_2}{2} \right)} \quad Eq. (1) $$

The percentage removal of pollutant was calculated according to Eq. (2).
Where: \(m \) is the sorbent mass (g). \(V \) is pollutant solution volume (L) in contact with the sorbent. \(C_i \) and \(C_e \) are the initial and equilibrium pollutant concentration (mg/L), respectively.

Photocatalytic activity for removal of dye

UVCUBE 400 (Honle Technology, Germany) emitting simulated solar light was used as the source of irradiation through all photocatalytic experiments. The intensity of irradiation is 1000 W/m². Dye photooxidation experiments were done in batch mode. Reactive red dye solution was mixed with the desired amount of the \(\text{ZrO}_2 \) photocatalyst and stirred for 30 min prior to the experiment to allow adsorption equilibrium. The lamp was then switched on to start the photooxidation process. After pre-defined irradiation times, definite volumes of solution were sampled and then filtered (using 0.45 \(\mu \)m PTFE filter) to separate the photocatalyst. The residual dye was measured using spectrophotometer as above mentioned. At maximums wavelength, the absorbance was detected and the dye removal percent was calculated by the following equation (3);

\[
\% R = \left(\frac{C_i - C_f}{C_i} \right) \times 100 \quad \text{Eq. (2)}
\]

\(C_i \) and \(C_f \) are the initial and final pollutant concentration (mg/L), respectively.

3. Results and discussion

Production of \(\text{ZrO}_2 \) materials

For use of zircon as material for zirconium-based materials, it needed to open the zircon. Theoretically, each one mole of zircon required four moles of caustic soda (NaOH), the reaction was taken place at higher temperature and extra-amount of soda. Manivasakan et al. 2011, employed higher than five folds of soda amount regarding theoretical value to decompose zircon at temperature of 600 °C for 3 h [11]. Also previously, zircon material is blended with soda and fused at temperature of 850 °C for 5 h to be decomposed and converted into intermediate products [12]. In the current, the blending ratios of caustic soda and zircon (4:1, and 2:1; soda : zircon) are used and heated at temperature 500 and 600 °C for 3 h (alkali fusion). After that, zircon converted to \(\text{Na}_2\text{ZrO}_3 \) associated with \(\text{Na}_2\text{SiO}_3 \) and other impurities as shown in equation (4). Then, the fused materials at different temperature are washed with water to dissolve \(\text{Na}_2\text{SiO}_3 \) and other impurities and finally, ziconyl hydroxide formed as shown in equation (5). Finally, ziconyl hydroxide was calcinated at 450, 500, and 600°C to form \(\text{ZrO}_2 \) materials. The current procedure for Zirconium-based synthesis provided reduction energy and materials consumption by 30 % and 40 %, respectively. Therefore, the production cost is reduced on the basis of materials and energy consumption.

\[
\begin{align*}
\text{ZrSiO}_4 & + 4 \text{NaOH} = \text{Na}_2\text{ZrO}_3 + \text{Na}_2\text{SiO}_3 + 2\text{H}_2\text{O} \quad \text{Eq (4)} \\
\text{Na}_2\text{ZrO}_3 + \text{Na}_2\text{SiO}_3 + \text{H}_2\text{O} & = \text{ZrO} (\text{OH})_2 (\text{solid}) + \text{Na}_2\text{SiO}_3 (\text{soluble}) + \text{NaOH} (\text{soluble}) \quad \text{Eq (5)} \\
\text{Zr} (\text{OH})_4 & + \text{Calcinations at different temperatures} = \text{ZrO}_2 \quad \text{Eq (6)}
\end{align*}
\]

Characterization of prepared materials

XRD analysis results

To confirm the phase formation of \(\text{ZrO}_2 \) after alkali fusion with NaOH at 500°C, XRD pattern of the prepared samples were recorded after calcination at 450, 500, 600 °C and is shown in Figure (1). For \(\text{ZrO}_2\)-450, Figure (1a) showed broad and incomplete definite diffraction peaks with remarkable peaks related to zircon. For \(\text{ZrO}_2\)-500, Figure (1b) showed broad and definite diffraction peaks without remarkable peaks related to zircon. It was found the strongest lines at 2\(\theta \) of 29.97°, 21.39, 30.33 and 34° related for 111 plane of monoclinic phase assigned with standard powder diffraction data using the JCPDS PDF. 81–1314 (monoclinic) and JCPDS PDF. 87–2105 (orthorhombic). Moreover, \(\text{ZrO}_2\)-600 has mixed phases of monoclinic and orthorhombic \(\text{ZrO}_2 \). Thus, \(\text{ZrO}_2\)-500 was selected as model material of monoclinic and orthorhombic \(\text{ZrO}_2 \). The crystallite size of nanoparticles of \(\text{ZrO}_2 \) has been calculated by XRD line broadening of using the following formula [13,14].

\[
\beta = \frac{k \lambda}{L \cos \theta} \quad \text{Eq. (7)}
\]
Where, K is 0.9, λ is wave length of X-ray source (0.1540598 nm), β is full width at half maximum in radians, and θ is Bragg’s diffraction angle. ZrO$_2$-500 that calcinated at 500 °C showed good crystalline.

Fig. 1. XRD pattern of different ZrO$_2$ at calcined 450 °C for 3h (a), 500 °C for 3h (b), 600 °C for 3h (c), commercial ZrO$_2$ (d)

Fourier Transform Infrared (FTIR) analysis

The Fourier transform infrared spectroscopy (FTIR) data were used to verify the functional groups on the nanoparticles. Figure (2) showed the FTIR spectra of commercial zirconium dioxide as ZrO$_2$-S reference, and as-prepared ZrO$_2$-500 which was calcinated at 500°C. There is a remarkable matching of IR bands between reference ZrO$_2$, and as-prepared ZrO$_2$. Common characteristic absorption bands were observed in all two FTIR spectra of samples. IR broad bands were observed between 3020-3680 cm$^{-1}$ and 1620 cm$^{-1}$ are assigned to the stretching and bending vibrations of the O–H bond due to adsorbed water molecules. The peak at 1384 cm$^{-1}$ with low intensity is attributed to the non-bridging OH groups. The sharp and intense IR band was observed at 1033 cm$^{-1}$ that was corresponding to the symmetric vibrations of Zr–O vibrational bands. Meanwhile, a broad intense IR mode between 420-495 cm$^{-1}$ was detected that was corresponding to the asymmetric Zr–O vibrational bands. A broad peak at 684 cm$^{-1}$ is ascribed to Zr–O vibration which is characteristic to tetragonal phase of ZrO$_2$.

Scanning electron microscopy (SEM) of prepared ZrO$_2$-500 materials

To confirm the morphology of prepared ZrO$_2$ materials, the scanning electron microscopy (SEM) was carried out. Figures (3) depicted typical SEM images for as-prepared ZrO$_2$-500 materials. SEM image of materials revealed that samples consist of homogeneous assemblies and aggregates of spherical nanoparticles. The obtained SEM imaging results of prepared materials confirmed...
the achievement of production of homogeneous nanocrystalline ZrO₂ from zircon.

Fig. 2. FTIR spectra of prepared ZrO₂-500 materials and reference ZrO₂

Fig. 3. SEM of ZrO₂-500 material

The adsorption efficiency of prepared materials for dye removal

Adsorption capacity of Red dye 195 at 50 mg/L over as-prepared ZrO₂-500 using various doses (0.2 - 3 g/L) was estimated. Figure (4a) illustrated the adsorption capacity profile of dye after 30 min contact time. The obtained results showed high to moderate removal efficiency for Red dye 195 at low dose. The results indicated that removal capacity of ZrO₂-500 was decreased from 37.1 to 2.2 mg/g with increasing dose up to 3 g/L. The adsorption was attributed to existence of surface hydroxyl group ionization on ZrO₂ surfaces is the simplest version of multi-site surface complexation models, which may chemically reacts with dye molecule. The decreasing of adsorption of adsorption capacity with higher dose is assigned to the blocking of active site by agglomeration of adsorbent. The extra dose of ZrO₂ results in low dispersion of adsorbent and reduction in available active sites. Nevertheless, the noted reduction of adsorption efficacy for dye uptake with rising of adsorbent amount is mostly owed to the agglomerating and wrapping of active position at elevated adsorbent concentration, which accompany to the decline of the efficient surface area for dye uptake [15-18]. Figure (4b) showed the reliance of adsorption capacity of dye on dose of ZrO₂-500. It was revealed good relation of dose on dye capacity removal with correlation coefficient R² of 0.995.

Fig. 4. Adsorption removal of red dye from wastewater using ZrO₂-500 (Conc. of dye 50 mg/L)
Photocatalytic processes efficiency of prepared materials for removal of dye under sunlight simulator after adsorption

The control trials for adsorption and photolysis were conducted as previously showed. Dye removed via adsorption by 15-30 %. The experimental results showed there is no remarkable removal of dye from wastewater via photolysis under light irradiation. Thus, the presence of light and photocatalyst (ZrO$_2$-500) enhances dye photooxidation. Figure (5a) showed the photocatalytic removal of red dye from wastewater using different dose of photocatalyst under simulated sunlight at initial dye concentration of dye of 50 mg/L. Under simulated sunlight, the dye degradation rate was increased with reaction time and with increasing ZrO$_2$-500 dose. It was recorded that the rates of removal after 240 min of irradiation were 34 %, 49 %, 62, 72 % and 60 % for ZrO$_2$ dose of 0.2, 0.4, 0.6, 1.0 and 3.0 g/L, respectively. A decrease in the removal rate of dye was observed for higher concentration of photocatalyst which is probably due to the intervention of mass transfer limitations. Besides, the turbidity, caused by excess photocatalyst, reduced the light transmittance inside the solution leading to lower light intensity reaching the catalyst surface [6]. Figure (5b) showed kinetic reaction of dye removal using different doses of ZrO$_2$-500, the results revealed that the experimental data are well fitting with first order kinetic reaction with rate constant value range 0.132 to 0.324 h$^{-1}$ (See Table 1). Also, the half life time and initial removal rate of dye are illustrated in Table 1.

Fig. 5. Time profile of dye removal from wastewater over ZrO$_2$-500 (initial Conc. of dye 50 mg/L) combined photocatalytic/adsorption processes
Table 1 First order rate constant (k), reaction rate (r_0) and half life time ($t_{1/2}$) of dye removal

<table>
<thead>
<tr>
<th>Catalyst dose (g/L)</th>
<th>First order rate constant (k), (h$^{-1}$)</th>
<th>Dye removal reaction rate (r_0), (mg. L$^{-1}$.h$^{-1}$)</th>
<th>Half life time ($t_{1/2}$), (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.132</td>
<td>6.6</td>
<td>5.3</td>
</tr>
<tr>
<td>0.4</td>
<td>0.204</td>
<td>10.2</td>
<td>3.4</td>
</tr>
<tr>
<td>0.6</td>
<td>0.27</td>
<td>13.5</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>0.324</td>
<td>16.2</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>0.246</td>
<td>12.3</td>
<td>2.8</td>
</tr>
</tbody>
</table>

The dye decontamination by an integrated adsorption and photocatalysis process was also scrutinized to demonstrate the effectiveness of ZrO$_2$-500. Dye was eliminated by 15-30% and 34-72% under condition adsorption in dark and combined adsorption-photocatalytic, respectively (Figure 6). Compared with a succession adsorption-degrading process, the integrating adsorption-degradation process had higher efficiency. ZrO$_2$-500 has dual excellent adsorbent, and photocatalyst properties and accelerating the photocatalysis process as well as enhancing the decontamination of dye. Figure 7 showed the impact of ZrO$_2$-500 dose on first order apparent rate constant (k) of dye removal, it is worthy noted that there is a high significant relation between k and dose with R2 of 0.98 which is characteristics for heterogeneous photocatalysis process.

Fig. 6. Removal of dye from wastewater over ZrO$_2$-500 by adsorption and combined photocatalytic/adsorption processes
4. Conclusions

Zirconia (ZrO$_2$) was prepared from locally available material (zircon), and it was implemented in different applications; adsorption of pollutant and photocatalytic removal processes. As well, tens grams scale preparation of ZrO$_2$ from zircon with different ratio; was successfully achieved. Moreover, the activity of different prepared materials for removal of dye was investigated using adsorption and photocatalytic process. The obtained XRD results of prepared materials confirmed the achievement of production of crystalline ZrO$_2$ from zircon as low cost materials. Also, the crystallite size of prepared materials was estimated and found with range from 28.5 to 47.5 nm. Meanwhile, the analogue of commercial ZrO$_2$ was 90 nm. FTIR spectra analysis of prepared materials were compared with commercial ZrO$_2$-S. Moreover, the SEM imaging of prepared ZrO$_2$-500 showed fabrication of homogeneous spherical crystalline ZrO$_2$ from zircon. ZrO$_2$-500 showed adsorption removal of Red dye 195 with capacity of 37.1 to 2.2 mg/g. In addition, photocatalytic activity of ZrO$_2$-500 material investigated for removal of red dye under sunlight simulator. ZrO$_2$-500 has dual excellent adsorbent, and photocatalyst properties and accelerating the photocatalysis process as well as enhancing the decontamination of dye.

Acknowledgements

Authors would like to express special thanks of gratitude to National Research center for the logistical help and for funding Grant of project entitled “Development of effective low-cost materials for removing hazardous contaminants from industrial wastewater “ Fund grant No. 11070105.

5. References

4. Ghaly MY, Ali MEM, Lars Österlund, Khattab IA, Badawy MI, Faraha JY, Zaher FM, Al-Maghrabi MNN. ZnO/spiral-shaped glass for solar photocatalyticoxidation of Reactive Red 120,

Almutairi MM; Ebrahem EE; Mahmoud MS, Atrees MS, Ali MEM, Khawassek YM. Nanocomposite of TiO₂@Ni-or Co-doped graphene oxide for efficient photocatalytic water splitting, Egyptian Journal of chemistry, 19 March 2019, DOI: 10.21608/ejchem.2019.9722.1648.

Egypt. J. Chem. 63 No.2 (2020)

PRODUCTION OF ZIRCONIA MATERIALS FROM ZIRCON... 523